# Publications▾ Expand All Digests ▾

H. Zhang et al.

Self-similar multimode bubble-front evolution of the ablative Rayleigh-Taylor instability in two and three dimensions.

Physical Review Letters (accepted). ▾ Digest ▾

Short description goes here.

K. M. Woo et al.

Impact of Three Dimensional Hot Spot Flow Asymmetry on Ion Temperature Measurements in Inertial Confinement Fusion Experiments.

(submitted) ▾ Digest ▾

Short description goes here.

H. Aluie

Convolutions On The Sphere: Commutation With Differential Operators.

GEM: International Journal on Geomathematics, Springer (accepted). ▾ Digest ▾

This paper generalizes the definition of convolutions on spherical surfaces and proves that the new definition commutes with differential operators on the sphere. The motivation is to analyze (via coarse-graining) the multi-scale physics of flows in spherical geometries, such as atmospheric and oceanic flows, and in ICF. The paper provides the mathematical foundation for analyzing energy scale-transfer in the N. Atlantic Ocean. I had an unfortunate experience with the editorial process at another journal, Nonlinearity, the full account of which is here. I hope no one else has to go through such a nightmare scenario.

K. M. Woo et al.

Effects of residual kinetic energy on yield degradation and ion temperature asymmetries in inertial confinement fusion implosions.

Physics of Plasmas, 25(5), 054603 (2018) ▾ Digest ▾

This paper studies the Rayleigh–Taylor instability in inertial confinement fusion implosions. It is shown that larger hot-spot volumes observed in low modes and the consequential pressure degradation can be explained in terms of increasing the residual kinetic energy. The low mode asymmetries are shown to cause the largest ion temperature variations in the mode spectrum.

D. Zhao, H. Aluie

The Inviscid Criterion for Decomposing Scales.

Physical Review Fluids, 3, 054603 (2018) ▾ Digest ▾

This paper pertains to the fundamental notion of "length-scale" and how to disentangle scale interactions in flows with significant density variations, such as high-speed, reactive, or multi-phase flows. A “length scale” in a fluid flow does not exist as an independent entity but is associated with the specific flow variable being analyzed. While this might seem obvious, we often discuss the “inertial range” or the “viscous range” of length scales in turbulence as if they exist independently of a flow variable, which in incompressible turbulence is the velocity field. How should we analyze “length-scales” in flows with significant density variations?

M. Buzzicotti, H. Aluie, L. Biferale, M. Linkmann

Energy transfer in turbulence under rotation.

Physical Review Fluids, 3, 034802 (2018) ▾ Digest ▾

Two different mechanisms are known to be able to transfer energy upscale in a turbulent flow. The first is characterized by two-dimensional interactions among triads lying on the two-dimensional, three-component (2D3C)/slow manifold. The second mechanism is three-dimensional and consists of interactions between triads with the same sign of helicity (homochiral). Here, we find that the upscale cascade at wave numbers close to the forcing scale is generated by increasingly dominant homochiral interactions which couple the three-dimensional bulk to the 2D3C plane. This coupling produces an accumulation of energy in the 2D3C plane, which then transfers energy to smaller wave numbers thanks to the two-dimensional mechanism.

H. Zhang, R. Betti, V. Gopalaswamy, R. Yan, H. Aluie

Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers.

Physical Review E, 97, 011203(R) (2018) ▾ Digest ▾

Ablation (or mass evaporation) arises, for example, from radiative sources such as lasers in laser-driven plasmas or from UV stellar light in cold gaseous hydrogen clouds such as in the Eagle Nebula. Small-scale perturbations in the ablative Rayleigh-Taylor instability (ARTI) are often neglected because they are linearly stabilized by ablation. Here, we show that modes of any wavelength can be destabilized if they are nonlinear (large amplitude perturbation). We find that for conditions found in laser fusion targets, the often neglected short wavelength ARTI modes are more efficient at driving mixing of ablated material throughout the target.

M. Buzzicotti, M. Linkmann, H. Aluie, L. Biferale, J. Brasseur, C. Meneveau

Effect of filter type on the statistics of energy transfer between resolved and subfilter scales from a-priori analysis of direct numerical simulations of isotropic turbulence.

Journal of Turbulence, 19(2), 167-197 (2018) ▾ Digest ▾

Energy scale-transfer sensitivity to filtering kernel, including a novel class of Galerkin projectors.

H. Aluie, M. Hecht, G. Vallis

Mapping the Energy Cascade in the North Atlantic Ocean: The Coarse-graining Approach.

Journal of Physical Oceanography, 48 (2), 225-244 (2018) ▾ Digest ▾

This paper is a culmination of interdisciplinary work spanning applied mathematics, physical oceanography, and turbulence. What started off as a seemingly straightforward application of methods from turbulence to oceanic data turned out to require new theoretical developments in applied mathematics, considerable effort in numerical implementation, and a few years to finish. I believe this was a worthy investment to provide tools that will hopefully prove valuable in atmospheric and oceanic dynamics, in climate science, and also in general flows with spherical geometry such as imploding targets in inertial confinement fusion power. The mathematical developments underpinning this analysis are published here.

H. Aluie

Coarse-Grained Incompressible Magnetohydrodynamics: analyzing the turbulent cascades. (Invited paper)

New Journal of Physics, 19, 025008 (2017) ▾ Digest ▾

This work, which was mostly done in collaboration with G. Eyink, formulates the coarse-graining (or filtering) approach in MHD flows from a first-principles physics stand-point. The approach is a powerful framework to study the multi-scale physics of flows, including MHD turbulence. A key result is the proof that magnetic helicity, unlike energy, cannot undergo a cascade to arbitrarily small scales. Magnetic helicity is an important topological quantity in MHD flows that quantifies the degree of knottedness of magnetic field lines. The paper also reviews the concept of a cascade, but within the coarse-graining framework, and attempts to explain intuitively how “rough” flows can dissipate energy without the aid of viscous (or microphysical) processes.

R. Yan, R. Betti, J. Sanz, H. Aluie, B. Liu, A. Frank

Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability.

Physics of Plasmas, 23 (2), 022701 (2016) ▾ Digest ▾

This paper studies the single mode Rayleigh-Taylor instability (RTI) in the presence of ablation (or mass evaporation). Ablation arises, for example, from radiative sources such as lasers in laser-driven plasmas or from UV stellar light in cold gaseous hydrogen clouds such as in the Eagle Nebula. While ablation has been known to slow down and even suppress the RTI in the linear (small amplitude) regime, here we show that ablation can exacerbate the instability in the nonlinear regime due to vorticity generation.

M. K. Rivera, H. Aluie, R. E. Ecke

The direct enstrophy cascade of two-dimensional soap film flows.

Phys. Fluids, 26, 055105 (2014) ▾ Digest ▾

Short description goes here.

G. L. Eyink, E. T. Vishniac, C. Lalescu, H. Aluie, K. Kanov, K. Burger, R. Burns, C. Meneveau, A. Szalay

Flux-freezing breakdown observed in high-conductivity magnetohydrodynamic turbulence.

Nature, 497, 466-469 (2013) ▾ Digest ▾

Short description goes here.

H. Aluie

The range of scale coupling and the cascade in the presence of shocks.

arXiv:1101.0150 (submitted) ▾ Digest ▾

Short description goes here.

H. Aluie

Scale decomposition in compressible turbulence.

Physica D: Nonlinear Phenomena, (in press) ▾ Digest ▾

Short description goes here.

H. Aluie, S. Li, H. Li

Conservative cascade of kinetic energy in compressible turbulence.

Astrophysical Journal Letters, 751, L29 (2012) ▾ Digest ▾

Short description goes here.

H. Aluie, S. Kurien

Joint downscale fluxes of energy and potential enstrophy in rotating stratified Boussinesq flows.

Europhysics Letters, 96, 44006 (2011) ▾ Digest ▾

Short description goes here.

H. Aluie

Compressible turbulence: The cascade and its locality.

Physical Review Letters, 106, 174502 (2011) ▾ Digest ▾

Short description goes here.

H. Aluie, G. L. Eyink

Scale locality of magnetohydrodynamic turbulence.

Physical Review Letters, 104, 081101 (2010) ▾ Digest ▾

Short description goes here.

G. L. Eyink, H. Aluie

Localness of energy cascade in hydrodynamic turbulence. I. Smooth coarse graining.

Physics of Fluids, 21, 115107 (2009) ▾ Digest ▾

Short description goes here.

H. Aluie, G. L. Eyink

Localness of energy cascade in hydrodynamic turbulence. II. Sharp spectral filter.

Physics of Fluids, 21, 115108 (2009) ▾ Digest ▾

Short description goes here.

G. L. Eyink, H. Aluie

The breakdown of Alfven's theorem in ideal plasma flows: Necessary conditions and physical conjectures.

Physica D: Nonlinear Phenomena, 223, 82 (2006) ▾ Digest ▾

Short description goes here.